Solving Logarithmic Equations

Sec 4.4.3
Solving Logarithmic Equations
$$|\log_5 x = 3| \qquad |\log_2(4x+1) = 5$$

$$5^3 = \chi \qquad 2^5 = 4x+1$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad 3| \qquad |25 = \chi + 1|$$

$$|25 = \chi \qquad |25 = \chi + 1|$$

$$|25 = \chi \rightarrow \chi + 1|$$

$$|$$

log = number ---> rewrite as a power

7+3 ln x = 6

3 ln x = -1/3

2.8

3.8

-1/3 =
$$\times$$
 ~repart

1. Isolate log/In 2. Rewrite as a

power

3. Solve resulting equation.

.717 ≈

$$\ln x+4 = 1$$

$$e = \sqrt{X+4}$$

$$e^2 = x + 4$$

1. Isolate log/In

2. Rewrite

3. Solve

4. Check for

extraneous

$$e^2 - 4 = X$$
 exact
 $3.389 \approx$ approx

exact and approximate...

$$\log_3(x+6) + \log_3(x+4) = 1$$

$$\log_3(x+6) + \log_3(x+4) = 1$$

$$\log_3(x+6) + \log_3(x+4) = 1$$

$$3 = (x+6)(x+4) = 1$$

$$3 = (x+6)(x+4) = 1$$

$$0 = (x+1)(x+2) = 1$$

$$0 = (x+7)(x+3)$$
Remember you cannot take the log/ln of a negative or zero. $x = (x+7)(x+3) = 1$

I. Condense to a single log 2. Rewrite 3. Solve 4. Check

$$\log_{4}(x+2) - \log_{4}(x-1) = 1$$

$$\log_{4}(x+2) - \log_{4}(x-1) = 1$$

$$4 = \frac{X+2}{X-1}$$

$$4 = \frac{X+2}{X-1}$$

$$4(X-1) = X+2$$

$$4x-4 = X+2$$

$$3x = 6$$

$$x = 2$$

$$\log (3x-3) = \log (x+1) + \log 4$$

 $\log (3x-3) = \log 4(x+1)$
 $3x-3 = 4x+4$
 $-9 < x$
 $= x$

Logs on both sides? Condense to one on each, then set arguments equal.

Suggested Practice Sec 4.4 page 490 49-92 every other odd

These problems have various nuances...small changes throughout. I suggest trying every suggested, and especially several from 83-92.

49-92 every other odd...

1. [6] 3. [3] 5. [3] 7. [2] 9.
$$\left\{\frac{3}{5}\right\}$$
 11. $\left\{\frac{3}{2}\right\}$ 13. [4] 15. [5] 17. $\left\{-\frac{1}{4}\right\}$ 19. [13] 21. [-2] 23. $\left\{\frac{\ln 3.91}{\ln 10}\right\}$; =0.59 25. [\ln 5.7]; =1.74 27. $\left\{\frac{\ln 17}{\ln 5}\right\}$; =1.76 29. $\left\{\ln \frac{23}{5}\right\}$; =1.53 31. $\left\{\frac{\ln 659}{5}\right\}$; =1.30 33. $\left\{\frac{\ln 793 - 1}{-5}\right\}$; = -1.14 35. $\left\{\frac{\ln 10, 478 + 3}{5}\right\}$; =2.45 37. $\left\{\frac{\ln 410}{\ln 7} - 2\right\}$; =1.09 39. $\left\{\frac{\ln 813}{0.3 \ln 7}\right\}$; =11.48 41. $\left\{\frac{3 \ln 5 + \ln 3}{\ln 3 - 2 \ln 5}\right\}$; =-2.80 43. [0, \ln 2]; \ln 2 = 0.69 45. $\left\{\frac{\ln 3}{2}\right\}$; =0.55 47. [0] 49. [81] 51. [e^2]; =7.39 53. [59] 55. {-9} 57. $\left\{-\frac{107}{27}\right\}$ 59. $\left\{\frac{62}{3}\right\}$ 61. $\left\{\frac{e^4}{2}\right\}$; =27.30 63. [$e^{-1/2}$]; =0.61 65. [$e^2 - 3$]; =4.39 67. $\left\{\frac{5}{4}\right\}$ 69. [-3] 71. [6] 73. [5] 75. [12] 77. $\left\{\frac{4}{3}\right\}$ 79. Ø 81. [5] 83. $\left\{\frac{2}{9}\right\}$ 85. [28] 87. [2] 89. Ø 91. $\left\{\frac{11}{3}\right\}$ 93. $\left\{\frac{1}{2}\right\}$ 95. [e^3 , e^{-3}] 97. $\left\{\pm\sqrt{\frac{\ln 45}{\ln 3}}\right\}$ 99. $\left\{\frac{5 + \sqrt{37}}{2}\right\}$