Sec 2.7.1 Inverses

Definition-

informal- two functions that "undo" or "reverse" each other.

formal- Let f and g be two functions such that f(g(x)) = x for every x in the domain of g

and g(f(x)) = x for every x in the domain of f.

i.e. the composite of two inverses, in both directions, yields only "x", the original input value

Notation-

$$f^{-1}(x) =$$

THE -I NOTATION IS A BIT CONFUSING-

FOR FUNCTIONS F(X), SIN X, CSC X
IT INDICATES AN "INVERSE FUNCTION"

ON A NUMBER OR VARIABLE THE SAME NOTATION INDICATES A RECIPROCAL (E.G. 2^{-3})

Verify that f(x) = 3x + 2 and g(x) = x-2 are inverses.

$$f \circ g(x) = 3\left(\frac{x-2}{3}\right) + 2$$

$$= x - 2 + 2$$

$$= x$$

$$g \circ f(x) = 3x - 2 + 2$$

$$= 3$$

Verify that
$$f(x) = \frac{3}{x-4}$$
 and $g(x) = \frac{3}{x} + 4$ are inverses.

$$f \circ g(X) = \frac{3}{\frac{3}{X} + 4} - 4$$

$$= \frac{3}{\frac{3}{X}} = 3(\frac{X}{3}) = X$$

$$gof(X) = \frac{3}{\frac{3}{x-4}} + 4$$

$$= 3(\frac{x-4}{3}) + 4$$

$$= x - 4 + 4 = X$$

Finding the inverse of a function-

- 1. Replace function notation with "y"
- 2. Interchange "x" and "y"
- 3. Solve for y

Find the inverse of
$$f(x) = 7x-5$$

$$y = 7x - 5$$

 $x = 7y - 5$

$$\frac{X+5}{7} = y \rightarrow \frac{1}{7}X + \frac{5}{7}$$

$$= f^{-1}/x$$

Find the inverse of
$$f(x) = x^3 + 1$$

$$y = x^3 + 1$$

$$x = y^3 + 1$$

$$x - 1 = y^3$$

$$\sqrt{x - 1} = y = f^{-1}(x)$$

Find the inverse of $f(x) = \frac{5}{x} + 6$

$$y = \frac{5}{x} + 6$$

$$x = \frac{5}{y} + 6$$

$$x = \frac{5}{y} + 5$$

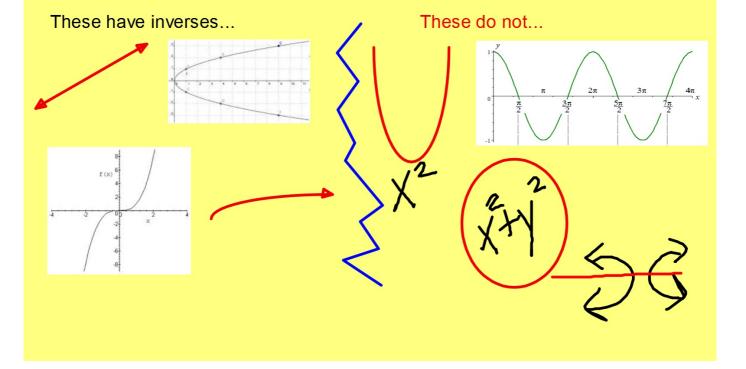
$$x = \frac{5}{y} = \frac{5}{y}$$

$$x = \frac{5}{y} = \frac{5}{x} = \frac{$$

Determining, using a graph, if a function has an inverse...

Use the Horzontal Line Test-

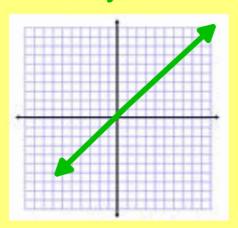
A function has an inverse if there is no horizontal line that intersects the graph of the function more than once.

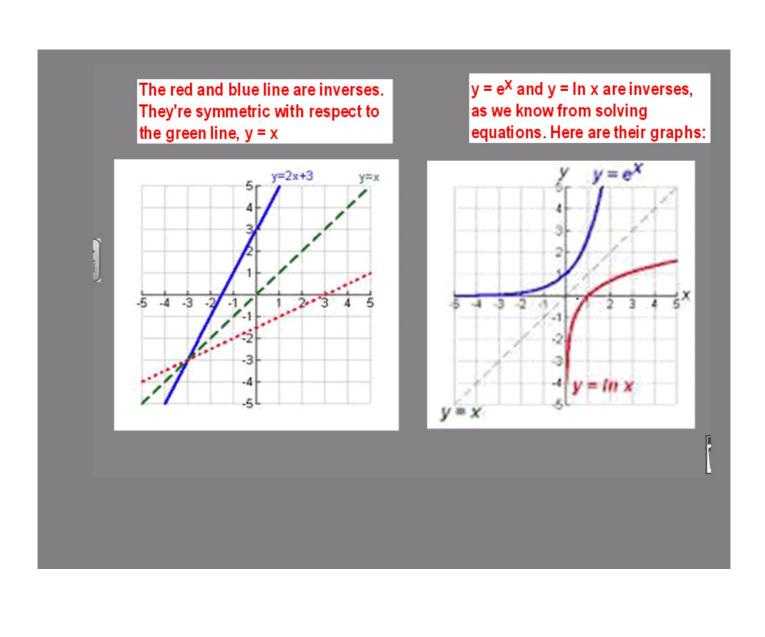


Symmetry

Two functions which are inverses of each other, when graphs, will have symmetry with respect to the line y = x

...and, their points are transposed. If (a, b) is on f, then (b,a) is on its inverse.

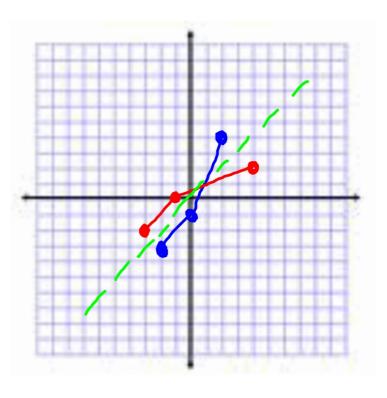




Sketch the inverse of a function that contains (-3,-2), (-1,0) and (4,2).

$$(-2,-3)$$

 $(0,-1)$ f^{-1}
 $(2,4)$



Find the inverse of $f(x) = x^2 - 1$ if $x \ge 0$ and graph each. $y = x^2 - 1$ $x = y^2$ $x + 1 = y^2$ Determine the domain and range of each. $f^{-1}(x) = \sqrt{x+1}$ $f^{-1}(x) = \sqrt{x+1}$

Suggested Practice-Sec 2.7 page 309 1-27 odds 29-36 39-47 odds $\begin{array}{r}
19.\sqrt[3]{x} - 2 \\
1. \text{ are inverses} \\
3. \text{ 11. } x - 3 \\
13. \frac{x}{2}$ 5. not increses
7. are
9. are
15. $\frac{x-3}{2}$ (to pass that incress that incress that incress that increases the page 309
17. $\sqrt{x} - 2$ 19. $\sqrt[3]{x} - 2$ 25. $\frac{7}{X+3}$ 29. ho 36. include points
30. yes $(0_1-3)(2_1-1)$

41.
$$\sqrt{\chi + 4}$$

