Name \qquad
\qquad

MAT 150 Dual Credit Practice Final

1. Given the function $(x)=4 x^{5}+5$, find $f^{-1}(x)$.
2. Let $\mathrm{f}(x)=3 x+4$ and $g(x)=2 x-3$. Find $\mathrm{f}(g(x))$.
3. Find the vertical asymptote(s) of the graph of the function $\mathrm{f}(x)=\frac{x+9}{x^{2}+9 x+20}$
4. Find the domain and range of the function $f(x)=\sqrt[2]{x-4}$
5. Write $\log (2 x+7)=8$ in simplified exponential form.
6. Which of the following could be the graph of a polynomial function that has a zero at $x=4$ with multiplicity 4 and a zero at $\mathrm{x}=-2$ with multiplicity 1 ?

7. The equation $s=-30 t^{2}+120 t+5$ models the height, s, of a ball in feet t seconds after it's thrown into the air. Determine the maximum height the ball will reach.
8. If $\$ 3500$ is invested at 2.5% interest compounded continuously, how long will it take (to the nearest tenth) to double?
9. Using the vertical line test, sketch three graphs that show y as a function of x.

10 Given the function $\mathrm{f}(\boldsymbol{x})=\boldsymbol{x}^{2}-12 \boldsymbol{x}+20$ determine the following.
a. The vertex is
b. List the x -intercept(s), if any, as ordered pairs
c. List the y-intercept(s), if any, as ordered pairs
d. The domain is
e. The range is
f. Sketch the graph. Label the points (parts a-c) on the graph as ordered pairs.

11 Given the function $f(x)=2^{\boldsymbol{x}+2}+1$ determine the following.
a. List the x -intercept(s), if any, as ordered pairs
b. List the y-intercept(s), if any, as ordered pairs
c. There is/are vertical asymptote(s), if any, at
d. There is/are horizontal asymptote(s), if any, at \qquad
e. The domain is
f. The range is
g. Sketch the graph. Label the points (parts a-b), as ordered pairs, and any asymptote(s) on the graph.

12. Use the graph of $\boldsymbol{y}=\mathrm{f}(\boldsymbol{x})$ shown below to determine the following.

a. The domain of $y=f(x)$ is
b. The range of $y=f(x)$ is
c. $f(1)=$
d. When $f(x)=-2, x=$
e. Give the interval over which the function is increasing
f. Give the interval over which the function is decreasing
g. Give the interval over which the function is constant

Determine the domain of each function

13. $f(x)=\log (x+3)$
14. $\mathrm{f}(x)=\frac{x+9}{x^{2}-9}$
15. $\mathrm{f}(x)=-2 x^{2}-4 x+12$

Solve for the variable. Remember to check your answer.
16. $2 x^{3}+14 x^{2}+24 x=0$
17. $\frac{1}{x+3}-\frac{2}{x-4}=\frac{5}{x^{2}-x-12}$
18. $9^{x}=27^{x-5}$
19. $9 e^{6 x}=144$
20. $\log _{5}(7 x-6)=4$
21. $\log x+\log (x-4)=\log 5$
22. $3|2 x+3|+2 \geq 20$ Write the solution in interval notation.
23. $4 \mathrm{x}=58-7 \mathrm{y}$
$5 x-26=-y$
Write the solution as an ordered pair.
24. Use the given piecewise function to determine the below. $f(x)=\frac{x^{2}-36}{x-6} \quad \begin{array}{rr}2 & \text { if } x=6\end{array}$
a. $f(4)=$
b. $f(6)=$
c. $f(9)=$

Perform the following combinations of functions

25. Given $f(x)=2 x-4$ and $g(x)=x-5 \quad$ find $(f-g)(x)$
26. Given $\mathrm{f}(x)=3 x^{2}-x+2$ and $g(x)=2-x^{2} \quad$ find $(f g)(x)$
27. Find the inverse of the following equation: $\mathrm{f}(x)=\frac{4}{8 x+5}$
28. Suppose that you have $\$ 15000$ to invest. Which investment yields the greater return over 5 years: 1) 5% compounded monthly or 2) 4.75% compounded continuously?
(You must show your work for the calculations of both investments)
29. A toy rocket is launched from the top of a 90 -foot tall building at an initial velocity of 225 feet per second. The function $\mathrm{s}(\boldsymbol{t})=\mathbf{- 1 6} \boldsymbol{t}^{2}+\mathbf{2 2 5} \boldsymbol{t}+\mathbf{9 0}$ models the rocket's height above the ground, $\mathrm{s}(\mathrm{t})$, in feet, t seconds after it was launched. After how many seconds will the rocket hit the ground? (Round to the nearest tenth)
30. When a person receives a drug injected into a muscle, the concentration of the drug in the body (measured in milligrams per 100 milliliters), is a function of the time elapsed after the injection (measured in hours). The graph of this scenario/model is shown. Find the average rate of change in the drug's concentration between 1 and 5 hours.

Time (hours)

