Sec 5.4 Solving Nonlinear Systems ...many more scenarios than with two linear equations

Solve the system (i.e., determine any points of intersection)

$$X-y=-1 \longrightarrow X-(X^{2}+1)=-1$$
 $y=(X^{2}+1) \longrightarrow X-(X^{2}-1)=-1$
 $0=X^{2}-X$
 $0=X(X-1)$
 $0=X(X-1)$
 $0=X(X-1)$
 $0=X(X-1)$

*substitution because ---> one variable is already isolated

Solve the system-

$$y = x^2 + 4x + 5$$

 $y = x^2 + 2x - 1$
 $x^2 + 4x + 5 = x^2 + 2x - 1$
 $4x + 5 = 2x - 1$
 $2x = -6$
 $x = -3 \rightarrow 9 - 6 - 1$
 $(-3, 2)$

Solve the system-

$$xy = 12 \rightarrow x = -12$$

$$x-2y+14=0$$

$$y \left[-\frac{12}{y} - 2y + 14 = 0 \right]$$

$$-|2-2y^2+|4y=0$$

$$2y^2 - |4y+|2=0$$

$$2(y^2-7y+6)=0$$

- 1. Isolate a variable.
- 2. Substitute
 3. Solve
 *look
 ahead when
 deciding
 which
 variable to
 isolate...some
 options
 easier than
 others

$$\begin{cases} (y-1) = 0 \\ y = 1 \\ -2 \end{cases} = -12 = -12$$

Solve the system-

$$XY = 4 \longrightarrow X = \frac{4}{y} = \frac{4}{2} = \frac{2}{2}$$

 $\chi^2 + \chi^2 = 8$ $= \frac{4}{-2} = -2$
 $(\frac{4}{y})^2 + \chi^2 = 8$ $(\chi^4 - 8\chi^2 + 16 = 0)$
 $\chi^2 = \frac{16}{y^2} + \chi^2 = 8$ $(\chi^4 - 8\chi^2 + 16 = 0)$
 $\chi^4 = \frac{16}{y^2} + \chi^2 = 8$ $(\chi^4 - 8\chi^4 + 16 = 0)$
 $\chi^4 = \frac{16}{y^2} + \chi^4 = 8\chi^2$ $(\chi^4 - 4\chi^4 + 16 = 0)$
 $\chi^4 = \frac{16}{y^2} + \chi^4 = 8\chi^4$

Highly Suggested
Practice
Sec 5.4
page 559
1, 5, 9, 13, 17, 19

```
1. {(-3,5), (2,0)} 13. {(3,1),(-3,-1),(1,3),(-1,-3)} 5. {(4,-10), (-3,11)} 17. {(0,1),(4,-3)} 9. {(-1.5,-4),(2,3)} 19. {(3,2)(3,-2),(-3,2),(-3,-2)}
```