Sec 3.5 Finding slant asymptotes...and graphing

A slant asymptote only exists if the degree of the numerator is exactly ONE more than the degree of the denominator.

(note, a horizontal asymptote will not exist)

We will determine them

using synthetic division.

Find the slant asymptote of-

$$f(x) = \frac{x^2 - 4x - 5}{x - 3}$$

$$0 = x^{2} + 4x - 5$$

$$= (x - 5)(x + 1)$$

$$= x - 5(x - 1)$$

*degree in numerator is exactly one larger

*ignore remainder when writing the equation for the SA •

$$0 = X^{2} - 1$$

 $1 = X$
 $1 - X$

*remember to insert zeros if the dividend skips a degree

Graph-

$$f(x) = \frac{x^3}{x^2-1}$$

Graph
$$f(x) = \frac{x-3}{x^2-9} = \frac{1}{(x+3)(x-3)} = \frac{1}{x+3}$$

hole @ $x = 3$
VA @ $x = -3$
HA @ $y = 0$
 $\frac{x}{0} = \frac{1}{10}$
 $\frac{x}{0} = \frac{1}{10}$

Suggested Practice

Sec 3.5 page 407 73,83,85,87

When graphing, show work for slant asymptotes and intercepts. Clearly label a point on each side of every vertical asymptote (or have a table). Test points and other details can be gleaned from the graphing calculator.

VA@X=0X=0(y)(x) = 0 und.

$$\frac{1}{2} + x - 6$$

 $\frac{1}{2} + x - 6$
 $\frac{1}{2} + x$

87.
$$SA@y= x-2$$
 $(x^3+1) VA @ x=0$
 $x=-2$
 $(x^2+2x) \frac{1}{0}$
 $x(x+2) = 0$
 $x=-1$
 $x=-2$
 $x=-$